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1.

I should like to ask the same question that Descartes
asked. You are proposing to give a precise definition
of logical correctness which is to be the same as my
vague intuitive feeling for logical correctness. How
do you intend to show that they are the same? ... The
average mathematician should not forget that intuition
in the final authority.

J. Barkley Rosser.

Many people have argued that computer programming should strive to

become more like mathematics. Maybe so , but not in the way they seem to think.

The aim of program verification, an attempt to make programming more

mathematics—like , is to increase dramatically one ’s confidence in the correct

functioning of a piece of software , and the device that verifiers use to

achieve this goal is a long chain of formal , deductive logic . In mathematics,

the aim is to increase one ’s confidence in the correctness of a theorem, and

it’s true that one of the devices mathematicians could in theory use to achieve

this goal is a long chain of formal logic. But in fact they don’t. What they

use is a proof, a very different animal. Nor does the proof settle the matter;

contrary to what its name suggests, a proof is only one step in the direction

of confidence. We believe that, in the end, it is a social process that

determines whether mathematicians feel conf ident about a theorem -- and we

believe that, because no comparable social process can take place among program

verifiers, program verification is bound to fail. We can’t see how it ’s going

to be able to affect anyone ’s confidence about programs.

Outsiders see mathematics as a cold , formal , logical , mechanical ,

monolithic process of sheer intellection; we argue that insofar as it is

successful mathematics is a social, informal, intuitive, organic, human

proc’.ss, a comeunity project. Within the mathematical community , the view of

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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2.

mathematics as logical and formal. was elaborated by Bertrand Russell and David

Hu bert in the first years of this century. They saw mathematics as proceeding

in principle from axioms or hypotheses to theorems by steps , each step easily

justifiable from its predecessors by a strict rule of transformation, the rules

of transformation few and fixed . The Principia Mathematica was the crowninq

achievement of the formalists . It was also the deathblow for the formalist

view. There is no contradiction here: Russell did succeed in showing that

ordinary working proofs can be reduced to formal , symbolic deductions. But he

failed , in three enormous, taxing volumes , to get beyond the elementary facts

of arithmetic. He showed what can be done in principle and what cannot be done

in practice. If the mathematical process were really one of strict, logical

progression, we would still be counting on our fingers.
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3.

Believing Theorems and Proofs

Indeed every mathematician knows that a proof has not
been “understood” if one has done nothing more than
verify step by step the correctness of the deductions
of which it is composed and has not tried to gain a
clear insight into the ideas which have led to the
construction of this particular chain of deductions
in preference to every other one.

N. Bourbaki.

Agree with me if I seem to speak the truth.

Socrates.

Stanielaw Ulam estimates that every year 200,000 theorems are published

by mathematicians 120). A number of these are subsequently contradicted or

otherwise disallowed, others are thrown into doubt, and most are ignored. Only
understood and

a tiny fraction come to be believed by any sizable group of mathematicians.

The theorems that get ignored or discredited are seldom the work of

crackpots or incompetents. In 1879, Kempe [11) published a proof of the

four-color conjecture that stood for eleven years before Heawood 18) uncovered

a fatal flaw in the reasoning. The first collaboration between Hardy and

Littlewood resulted in a paper they delivered at the June 1911 meeting of the

London Mathematical Society; the paper was never published because they

subsequently discovered that their proof was wrong 14) . Cauchy, Lamé, and

Kununer all thought at one time or another that they had proved Fermat ’s Last

Theorem 13) . In 1945, Rademacher thought he had solved the Riemann Hypothesis ;

his results not only circulated in the mathematical world but were announced

in Time magazine 131 .

Recently we found the following group of footnotes appended to a brief

historical sketch of some independence results in set theory (103 :
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4.

1. The result of problem 11 contradicts the results announced by

Levy 1l963b1 . Unfortunately , the construction presented there

cannot be completed .

2. The transfer to ZF was also claimed by Narek 11966) but the

outlined method appears to be unsatisfactory and has not been

published .

3. A contradicting result was announced and later withdrawn by

Truss 11970].

4. The example in Problem 22 is a counterexample to another

condition of Mostowski, who conjectured its sufficiency and

singled out this example as a test case.

5. The independence result contradicts the claim of Feigner 11969)

that the Cofinality Principle implies the Axiom of Choice. An

error has been found by Morris (see Feigner ’s corrections to
[1969]).

The author has no axe to grind; he has probably never even heard of the current

controversy in programming; and it is clearly no part of his concern to hold

his friends and colleagues up to scorn. There is simply no way to describe the

history of mathematical ideas without describing the successive social processes

at work in proofs. The point is not that mathematicians make mistakes; that

goes without saying . The point is that mathematicians ’ errors are corrected,

not by formal symbolic logic , but by other mathematicians.

Just increasing the number of mathematicians work . ng on a given problem

does not necessarily insure believable proofs . Recently, two independent

groups of topologists , one American , the other Japanese , independently announced

results concerning the same kind of topological object, a thing called a

hcwotopy group. The results turned out to be contradictory , and since both

proofs involved camplex symbolic and numerical calculation, it was not at all

evident who had goofed. But the stakcc were sufficiently high to justify

pressing the issue , so the Japanese and American proofs were exchanged .

—-~~~~~



5.

Obviously , each group was highly motivated to discover an error in the other’s

proof; obviously, one proof or the other was incorrect. But neither the

Japanese nor the American proof could be discredited. Subsequently, a third

group of researchers obtained yet another proof , this time supporting the

American result. The weight of the evidence now being against their proof,

the Japanese have retired to consider the matter further.

There are actually two morals to this story. First, a proof does not

in itself significantly raise our confidence in the probable truth of the

theorem it purports to prove. Indeed , for the theorem about the homotopy

group, the horribleness of all the proffered proofs suggests that the theorem

itself requires rethinking. A second point to be made is that proofs

consisting entirely of calculations are not necessarily correct.

Even simplicity, clarity, and ease provide no guarantee that a proof

is correct. The history of attempts to prove the Parallel Postulate is a

particularly rich source of lovely, trim proofs that turned out to be false.

From Ptolemy to Legendre (who tried time and time again), the greatest

geometricians of every age kept ramming their heads against Euclid ’s fifth

postulate. What’s worse, even though we now know that the postulate is

indemonstrable, many of the faulty proofs are still so beguiling that in

Heath ’s definitive commentary on Euclid 17] they are not allowed to stand

alone; Heath marks them up with italics, footnotes, and explanatory marginalia ,

lest some young mathematician , thumbing through the volume, be misled.

The idea that a proof can, at best, only probably express truth makes

an interesting connection with a recent mathematical controversy. In a recent

issue of Science (12], Gina Ban Kolata suggested that the apparently secure

notion of mathematical proof may be due for revision. Here the central

question is not “How do theorems get believed?” but “What is it that we believe

L __ _________
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when we believe a theorem? ” There are two relevant views , which can be roughly

labeled classical and probabilistic.

The classicists say that, when one believes mathematical statement A ,

one believes that in princi~ple there is a correct, formal , valid, step—by-step,

syntactically checkable deduction leading to A in a suitable logical calculus

such as Zerme].o-Fraenkel set theory or Peano arithmetic, a deduction of A

a la the Principia, a deduction that completely formalizes the truth of A in

the binary , Aristotelian notion of truth: “A proposition is true if it says of

what is, that it is, and if it says of what is not, that it is not.” This

formal chain of reasoning is by no means the same thing as an everyday ,

ordinary mathematical proof. The classical view does not require that an

ordinary proof be accompanied by its formal counterpart; on the contrary , there

are mathematically sound reasons for allowing the gods to formalize most of our

arguments. One theoretician estimates , for instance , that a formal

demonstration of one of Ramanujan’s conjectures assuming set theory and

elementary analysis would take about two thousand pages; the length of a

deduction from first principles is nearly inconceivable [14]. But the

classicist believes that the formalization is in principle a possibility and

that the truth it expresses is binary, either so or not-so.

The probabilists argue that, since any very long p~.oof can at best

be viewed as only probably correct, why not state theorems probabilistically

and give probabilistic proofs? The probabilistic proof may have the dual

advantage of being technically easier than the classical, bivalent one, and

may allow mathematicians to isolate the critical ideas that give rise to

uncertainty in traditional , binary proofs. This process stay even lead to a

more plausible classical proof. An illustration of the probabilist approach

is Michael Rabin’s algorithm for testing probable primality [173. For very
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large integers N, all of the classical techniques for determining whether N

is composite become unworkable. Using even the most clever programming , the

calculations required to determine whether numbers larger than 10 are prime

require staggering amounts of computing time. Rabin’s insight was that if you

are willing to settle for a very good probability that N is prime (or not

prime), then you can get it within a reasonable amount of time -- and with
vanishingly small probability of error.

in view of these uncertainties over what constitutes an acceptable

proof, which is af ter all a fairly basic element of the mathematical process,

how is it that mathematics has survived and been so successful? If proofs

bear little resemblance to formal deductive reasoning, if they can stand for

generations and then fall, if they can contain flaws that defy detection, if

they can express only the probability of truth within certain error bounds --
if they are, in fact, not able to prove theorems in the sense of guaranteeing

them beyond probability and, if necessary, beyond insight, well , then , how

does mathematics work? How does it succeed in developing theorems that are

significant and that compel belief?

First of all, the proof of a theorem is a message. A proof is not a

beautiful abstract object with an independent existence. No mathematician

grasps a proof , sits back , and sighs happily at the knowledge that he can now

be certain of the truth of his theorem. He runs out into the hall and looks

for someone to listen to it. He bursts into a colleague’s office and

commandeers the blackboard . He throws aside his scheduled topic and regales

a seminar with his new idea. He drags his graduate students away from their

dissertations to listen. He gets onto the phone and tells his colleagues in

Texas and Toronto. In its first incarnation, a proof is a spoken message, or

at most a sketch on a chalkboard or a paper napkin. 



• — -~.--—~:•:_~:•5’ ~~~~~~~~~~~~~~~~~~~ ~
-

8.

That spoken stage is the f irst  filter for a proof. If it generates no

excitement or belief among his friends, the wise mathematician reconsiders it.

But if they find it tolerably interesting and believable, he writes it up.

After it has circulated in draft for a while, if it still seems plausible, he

does a polished version and submits it for publication. If the referees also

find it attractive and convincing , it gets published so that it can be read by

a wider audience. If enough members of that larger audience believe it and

like it, then after a suitable cooling—off period the reviewing publications

take a more leisurely look, to see whether the proof is really as pleasing as

it first appeared and whether, on calm consideration, they really believe it.

And what happens to a proof when it is believed? The most immediate

process is probably an internalization of the result. That is, the

mathematician who reads and believes a proof will attempt to paraphrase it,

to put it in his own terms, to fit it into his own personal view of mathematical

knowledge. No two mathematicians are likely to internalize a mathematical

concept in exactly the same way, so this process leads usually to multiple

versions of the same theorem, each reinforcing belief, each adding to the

feeling of the mathematical community that the original statement is likely

to be true. Gauss, for example, obtained at least half a dozen independent

proofs of his “law of quadratic reciprocity” ; to date over f i f ty  proofs of this

law are known. Intre Lakatos gives, in his Proofs and Refutations [13),

historically accurate discussions of the transformations that several famous

theorems underwent from initial conception to general acceptance. Lakatos

demonstrates that Euler’s formula V- E+ F — 2 was reformulated again and again

for almost two hundred years after its first statement , until it f inally

reached its current stable form. The most compelling transformation that can

take place is generalization. If, by the same social process that works on the

• —.-~~- - -•~~~~-----~ -~~•. • ~~---•—~~~~-—-—-~~
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original theorem, the generalized theorem comes to be believed, then the

original statement gains greatly in plausibility.

A believable theorem gets used. It may appear as a lemma in larger

proofs; if it does not lead to contradictions, then we are all the more

inclined to believe it. Or engineers may use it by plugging physical values

into it. We have fairly high confidence in classical stress equations because

we see bridges that stand; we have some confidence in the basic theorems of

fluid mechanics because we see airplanes that fly.

Believable results sometimes make contact with other areas of

mathematics -- important ones invariably do. The successful transfer of a

theorem or a proof technique from one branch of mathematics to another

increases our feeling of confidence in it. In 1964, for example, Paul Cohen

used a technique called forcing to prove a theorem in set theory j2J ; at that

time, his notions were so radical that the proof was hardly understood. But

subsequently other investigators interpreted the notion of forcing in an

algebraic context, connected it with more familiar ideas in logic, generalized

the concepts, and found the generalizations useful. All of these connections

(along with the other normal social processes that lead to acceptance) made the

idea of forcing a good deal more compelling, and today forcing is routinely

studied by graduate students in set theory.

After enough internalization , enough transformation, enough

generalization , enough use, enough connection, the mathematical community

eventually decides that the central concepts in the original theorem, now

perhaps greatly changed, have an ultimate stability. If the various proofs

feel right and the results are examined from enough angles, then the truth of

the theorem is eventually considered to be established. The theorem is thought

to be true in the classical sense -- that is, in the sense that it could be

~~~~~~~~~~~~~~~~~~~~~~
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demonstrated by formal, deductive logic, although for almost all theorems no

such deduction ever took place or ever will.

— _________________ — —
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11.

The Role of Simplicity

For what is clear and easily comprehended attracts; the
complicated repels.

David Hu bert.

Sometimes one has to say difficult things, but one ought
to say them as simply as one knows how.

G. H. Hardy.

As a rule, the most important mathematical problems are clean and easy

to state. An important theorem is much more likely to take form A than form B.

A~ Every isa 

B~ If and and and and 
except for special cases

a) 
b) 
c) 

then unless

i) or
ii) or
i4) 

every that satisfies is 

The problems that have most fascinated and tormented and delighted

mathematicians over the centuries have been the simplest ones to state.

Einstein held that the maturity of a scientific theory could be judged by how

well it could be explained to the man on the street. The four-color theorem

rests on such slender foundations that it can be stated with complete precision

to a child. If the child has learned his multiplication tables, he can

understand the problem of the location and distribution of the prime numbers.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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And the deep fascination of the problem of defining the concept of “number”

might turn him into a mathematician.

The correlation between importance and simplicity is no accident. . 
-

Simple, attractive theorems are the ones most likely to be heard, read,

internalized, and used. Mathematicians use simplicity as the first test for

a proof . Only if it looks interesting at first glance will they consider it

in detail. Mathematicians are not altruistic masochists. On the contrary,

the history of mathematics is one long search for ease a~ i pleasure and

elegance -- in the realm of symbols, of course.

Even if they didn ’t want to, mathematicians would have to use the

criterion of simplicity; it is a psychological impossibility to choose any but

the simplest and most attractive of 200,000 candidates for one’s attention. If

there are important, fundamental concepts in mathematics that are not simple ,

• mathematicians will probably never discover them.

Messy, ugly mathematical propositions that apply only to paltry classes

of structures, idiosyncratic propositions, propositions that rely on

inordinately expensive mathematical machinery, propositions that require five

blackboards or a roll of paper towels to sketch -- these are unlikely ever to

be assimilated into the body of mathematics. And yet it is only by such

assimilation that proofs gain believability. The proof by itself is nothing ;

only when it has been subjected to the social processes of the mathematical

conununity does it become believable.

In this paper, we have tended to stress simplicity above all else

because that is the first filter for any proof. But we do not wish to paint

ourselves and our fellow mathematicians as philistines or brutes. Once an idea

has met the criterion of simplicity, other standards help determine its place

among the ideas that make mathematicians gaze off abstractedly into the

_ _  _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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distance. luri Manin 114) has put it best: A good proof is one that makes

I us wiser.

_ _ _ _ _  
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Disbelieving Verifications

On the contrary, I find nothing in logistic for the
discoverer but shackles. It does not help us at all
in the direction of conciseness, far from it, and if
it requires twenty-seven equations to establish that
1 is a number, how many will it require to demonstrate
a real theorem?

Henri Poincaré.

One of the chief duties of the mathematician in acting
as an advisor to scientists ... is to discourage them
from expecting too much from mathematics.

Norbert Weiner.

Mathematical proofs increase our confidence in the truth of mathematical

statements only after they have been subjected to the social mechanisms of the

mathematical community . These same mechanisms doom the so-called proofs of

sof tware, the long formal verifications that correspond, not to the working

mathematical proof , but to the imaginary logical structure that the

mathematician conjures up to describe hiø feeling of belief. Verifications

are not messages; a person who ran out into the hall to communicate his latest

verification would rapidly find himself a social pariah. Verifications cannot

really be read; a reader can flay himself through one of the shorter ones by

dint of heroic effort, but that’s not reading. Being unreadable and --
literally -- unspeakable, verifications cannot be interne~lized, transformed,

generalized, used, connected to other disciplines, and eventually incorporated

into a community consciousness. They cannot acquire credibility gradually,

as a mathematical theorem does; one either believes them blindly, as a pure act

of faith , or not at all.

At this point, some adherents of verification admit that the analogy to

mathematics fails. Having argued that A, programeing, resembles B, mathematics,

and having subsequently learned that B is nothing like what they imagined, they

- TI Ili ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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wish to argue instead that A is like B’ , their mythical version of B. We then

find ourselves in the peculiar position of putting the argument that was

originally theirs, asserting that yes, indeed, A does resemble B; our argument, j -

however, matches the terms up differently from theirs. (See figures 1 and 2.)

Mathematics Prograzimting Mathematics Programming

theorem . . . program theorem . . . specification
proof . . . verification proof . . . program

imaginary
formal

demonstration . . . verification
Figure 1: Figure 2:

The Verifiers ’ Our Analogy
Original Analogy

Verifiers who wish to abandon the simile and substitute B’ should as an aid

to understanding abandon the language of B as well -- in particular , it would

- 
- help if they did not call their verifications “proofs.” As for ourselves, we

will continue to argue that programming is like mathematics, and that the same

social processes that work in mathematical proofs doom verifications.

There is a fundamental logical objection to verification, an objection

on its own ground of formalistic rigor. Since the requirement for a program

is informal and the program is formal, there must be a transition, and the

transition itself must necessarily be informal. We have been distressed to

learn that this proposition, which seems self-evident to us, is controversial.

So we should emphasize that as anti-formalists we would not object to

verification on these grounds; we only wonder how this inherently informal step

fits into the formalist view. Have the adherents of verification lost sight

- ~~~~ .~~~ ~~~~~~~~~~ 12 18 O~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ • - - .~~~~~~~~~~~~~~ -~~~~~~ - ,
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of the informal origins of the formal objects they deal with? Is it their

assertion that their forntalizations are somehow incontrovertible? We must

conf ess our confusion and dismay.

Then there is another logical difficulty, nearly as basic, and by no

means so hair-splitting as the one above: The formal demonstration that a

program is consistent with its specifications has value Only if the

specifications and the program are independently derived. In the toy-program

atmosphere of experimental verification, this criterion is easily met. But in

real life , if during the design process a program fails, it is changed, and

the changes are based on knowledge of its specifications; or the specifications

are changed, and those changes are based on knowledge of the program gained

through the failure. In either case, the requirement of having independent

criteria to check against each other is no longer met. Again, we hope that no

one would suggest that programs and specifications should not be repeatedly

modified during the design process. That would be a position of incredible

poverty -- the sort of poverty that does, we fear , result from infatuation with

formal logic.

Back in the real world , the kinds of input/output specifications that

acccsnpany production software are seldom simple. They tend to be long and

complex and peculiar. To cite an extreme case, computing the payroll for the

French National Railroad requires more than 3,000 pay rates (one uphill, one

downhill, and so on). The specifications for any reasonable compiler or

operating system fill volumes -- and no one believes that they are complete.
There are even some cases of black-box code, numerical algorithms that can be

shown to work in the sense that they are used to build real airplanes or drill

real oil wells, but work for no reason that anyone knows; the input assertions

for these algorithms are not even formulable , let alone formalizable. To take
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just one example, an important algorithm with the rather jaunty name of Reverse

Cuthill-McXee was known for years to be far better than plain Cuthill-McKee,

known empirically , in laboratory tests and field trials and in production.

Only recently, however, has its superiority been theoretically demonstrable (6],

and even then only with the usual informal mathematical proof, not with a

formal deduction. During all of the years when Reverse Cuthill-McKee was

unproved, even though it automatically made any program in which it appeared

unverifiable, programmers perversely went on using it.

It might be countered that, while real-life specifications are lengthy

and complicated, they are not deep. Their verifications are, in fact, nothing

more than extremely long chains of substitutions to be checked with the aid of -

simple algebraic identities.

All we can say in response to this is: Precisely. Verifications are

long and involved but shallow; that’s what’s wrong with them. The verification

of even a puny program can run into dozens of pages, and there’s not a light

moment or a spark of wit on any of those pages. Nobody is going to run into

a friend’s office with a program verification. Nobody is going to sketch a

verification out on a paper napkin. Nobody is going to buttonhole a colleague

into listening to a verification. Nobody is ever going to read it. One can

feel one ’s eyes glaze over at the very thought.

It has been suggested that very—high-level languages, which can deal

directly with a broad range of mathematical objects, or functional languages,

which it is said can be concisely axiomatized , might be used to insure that a

verification would be interesting and therefore responsive to a social process

like the social process of mathematics.

In theory this idea sounds hopeful; in practice, it doesn ’t work out.

For example, the following verification condition arises in the proof of a

- —•—~~~~ ~~~~~ - • • - .- - ~~ --
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fast Fourier transform written in MADCAP , a very-high-level language j l8J :

If S c (1,-i), b — exp(2niS/N), r is an integer, N

(1) C — {2j: 0 � j < N/4} and

(2) a — <ar: a = b l~V2) 
0 � r < N/2> and

(3) A {j: jmodN < N/2, 0 � j < N) and

(4) A* {j :0 � j c N } _
~~~and

(5) ~ ~~r ~ = Z k1Cb
klln/2 imodN) i = {j: (j-r)mod (N/2) 0)>

an d k � r

then
(1) Afl(A+2r k l ) = {x: ~€1UOd2

r k  
< 2r—k—1, 0 � x < N)

(2) <
~
ac~

ac
> <a

s: ar = hr2 mo~~N/2) 0 � r < N/2>

~~~~ <
~ ~

‘
An (A+2r—k—1) + F{ j: 0�j<N}-Ac~

(<
~
a
c
Pa
c
>*(F

Afl(A+2r_k..1) 
+ F

{3. O�~<N}_Afl (A+2
r—k—1)

))>

r-k-1
f = E k (b lr/2 JxmodN

) R = {j: (j~r)mod2 
c—i 

—r r 
kER 1 r
i r

(4)

<
~r ~r 

— ~ k1(b
k1~~

’2 Jmo~~) Rr — {j: (j-r)mod (N/2) 0)’
k1cR

This is not what we would call pleasant reading.

Some verifiers will concede that verification is s~mp1y unworkable for

the vast majority of programs but argue that for a few crucial applications

the agony is worthwhile. They point to air-traffic control, missile systems,

and the exploration of space as areas in which the risks are so high that any

expenditure of time and effort can be justified.

Even if this were so, we would st ill insist that verification renounce

its claim on all other areas of programming; to teach students in introductory

programming courses how to do verification, for instance, ought to be as

LI. I.~ ~±I ~~~~~~



19.

far-fetched as teaching students in introductory biology how to do open-heart

surgery. But the stakes do not affect our belief in the basic impossibility

of verifying any system large enough and flexible enough to do any real-world

task. No matter how high the payoff , no one will ever be able to force himself

to read the incredib ly long , tedious verifications of real-life systems, and

unless they can be read, understood, and refined, the verifications are

worthless.

Now, it might be argued that all these references to readability and

internalization are irrelevant, that the aim of verif ication is eventually to

construct an automatic verifying system.

Unfortunately, there is a wealth of evidence that fully automated

verifying systems are out of the question. The lower bounds on the length of

formal demons trations for mathematical theorems are immense (193 , and there is

no reason to believe that such demonstrations for programs would be any shorter

or cleaner —- quite the contrary. In fact, even the strong adherents of

program verification do not take seriously the possibility of totally automated

verifiers. Ralph London, a proponent of verification, speaks of an out-to-lunch

system, one that could be left unsupervised to grind out verifications; but he

doubts that such a system can be built to work with reasonable reliability.

One group, despairing of automation in the foreseeable future, has proposed

that verifications should be performed by teams of “grunt mathematicians, ”

low-level mathematical teams who will check verification conditions. The 4

sensibilities of people who could make such a proposal seem odd, but they do

serve to indicate how remote the possibility of automated verification must be.

Suppose, however , that an automatic verifier could somehow be built.

Suppose further that programmers did somehow come to have faith in its

verifications. In the absence of any real-world basis for such belief, it

_ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ __ _ _  - -- • - -- ~ • - • -  --~~~- — ~~~
--
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would have to be blind faith, but no matter. Suppose that the philosopher’s

stone had been found, that lead could be changed to gold , and that programmers

were convinced of the merits of feeding their programs into the gaping jaws

of a verifier. It seems to us that the scenario envisioned by the proponents

of verification goes something like this: The programmer inserts his 300—line

input/output package into the verifier. Several hours later, he returns.

There is his 20,000-line verification and the message “VERIFIED.”

There is a tendency, as we begin to feel that a structure is logically,

provably right, to remove from it whatever redundancies we originally built

in because of lack of understanding. Taken to its extreme, this tendency

brings on the so—called Titanic effect; when failure does occur, it is massive

and uncontrolled. To put it another way, the severity with which a system

fails is directly proportional to the intensity of the designer’s belief that

it cannot fail. Programs designed to be clean and tidy merely so that they can

be verified will be particularly susceptible to the Titanic effect. Already we

see signs of this phenomenon. In their notes on Euclid 116], a language

designed for program verification, several of the foremost verification

adherents say, “Because we expect all Euclid programs to be verified, we have

not made special provisions for exception handling ... Runtime software errors

should not occur in verified programs.” Errors should noL occur? Shades of

the ship that shouldn ’t be sunk.

So, having for the moment suspended all rational disbelief, let us

suppose that the programmer gets the message “VERIFIED.” And let us suppose

further that the message does not result from a failure on the part of the

verifying system. What does the programmer know? He knows that his program

is formally, logically, provably, certifiably correct. He does not know,

however, to what extent it is reliable, dependable, trustworthy, safe; he does 
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not know within what limits it will work; he does not know what happens when

it exceeds those limits. And yet he has that mystical stamp of approval:

“VERIFIED.” We can almost see the iceberg looming in the background over the

unsinkable ship.

Luckily, there is little reason to fear such a future. Picture the same

programmer returning to find the same 20,000 lines. What message would he

really f ind, supposing that an automatic verifier could really be built? Of

course, the message would be “NOT VERIFIED.” The programmer would make a

change, feed the program in again, return again. “NOT VERIFIED.” Again he

would make a change, again he would feed the program to the verifier, again

“NOT VERIFIED.” A program is a human artifact; a real-life program is a

complex human artifact; and any human artifact of sufficient size and complexity

is inçerfect. The message will never read “VERIFIED.”

_ _ _ _ _ _ _ _  

________________________ -- _ _ _ _
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The ~~le of Continuity

We may say, roughly , that a mathematical idea is
“significant” if it can be connected, in a natural and
illuminating way, with a large complex of other
mathematical ideas.

G. H. Hardy.

The only really fetching defense ever offered for verification is the

scaling—up argument. As best we can reproduce it, here is how it goes:

(1) Verification is now in its infancy. At the moment, the largest

tasks it can handle are verifications of algorithms like FIND and model programs

like GCD. It will in time be able to tackle more and more complicated

algorithms and trickier and trickier model programs. These verifications are

comparable to mathematical proofs. They are read. They generate the same

kinds of interest and excitement that theorems do. They are subject to the

ordinary social processes that work on mathematical reasoning , or on reasoning

in any other discipline , for that matter.

(2) Big production systems are made up of nothing more than algorithms

and model programs. Once verified , algorithms and model programs can make up

large, workaday production systems, and the (admittedly unreadable) verification

of a big system will be the sum of the many small, attractive , interesting

verifications of its components.

With (1) we have no quarrel. Actually , algorithms were proved and the

proofs read and discussed and assimilated long before the invention of

computers -- and with a striking lack of formal machinery. Our guess is that . -
the study of algorithms and model programs will develop like any other

mathematical activity, chiefly by informal, social mechanisms, very little if

at all by formal mechanisms.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - 
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It is with (2) that we have our fundamental disagreement. We argue that

there is no continuity between the world of FIND or GCD and the world of

production sof tware, billing systems that write real bills, scheduling systems

that schedule real events, ticketing systems that issue real tickets. And we

argue that the world of production software is itself discontinuous.

No programmer would agree that large production systems are composed

of nothing more than algorithms and small programs. Patches, ad-hoc 3

constructions, bandaids and tournequets, bells and whistles, glue, spit and

polish, signature code, blood-sweat—and—tears, and, of course, the kitchen

sink —— the colorful jaryon of the practicing programmer seems to be saying
something about the nature of the structures he works with; maybe theoreticians

ought to he listening to him. It has been estimated that more than half the

code in any real production system consists of user interfaces and error

messages -- ad-hoc, informal structures that are by definition unverifiable.

Even the verifiers themselves sometimes seem to realize the unverifiable

nature of most real software. C. A. R. Hoare has been quoted (9] as saying,

“In many applications, algorithm plays almost no role, and certainly presents

almost no problem.” (We wish we could report that he thereupon threw up his

hands and abandoned verification, but no such luck.)

Or look at the difference between the world of GCD and the world of

production software in another way: The specifications for algorithms are

concise and tidy, while the specifications for real-world systems are immense,

frequently of the same order of magnitude as the systems themselves. The

specifications for algorithms are highly stable, stable over decades or even

centuries; the specifications for real systems vary daily or hourly (as any

programmer can testify). The specifications for algorithms are exportable,

general; the specifications for real systems are idiosyncratic and ad hoc. 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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These are not differences in degree. They are differences in kind .

Baby-sitting for a sleeping child for one hour does not scale up to raising a

family of ten -- the problems are essentially, fundamentally different.

And within the world of real production software there is no continuity

either. The scaling-up argument seems to be based on the fuzzy notion that

the world of programming is like the world of Newtonian physics -- made up of

smooth, continuous functions. But in fact programs are jagged and full of

holes and caverns. Every programmer knows that altering a line or sometimes

even a bit can utterly destroy a program or mutilate it in ways that we do not

understand and cannot predict. And yet at other times fairly substantial

changes seem to alter nothing; the folklore is filled with stories of pranks

and acts of vandalism that frustrated the perpetrators by remaining forever

undetected.

There is a classic science—fiction story about a time traveler who goes

back to the primeval jungles to watch dinosaurs and then returns to find his

own time altered almost beyond recognition. Politics , architecture , language

-- even the plants and animals seem wrong, distorted. Only when he removes

his time-travel suit does he understand what has happened. On the heel of his

boot, carried away from the past and therefore unable to perform its function

in the evolution of the world, is crushed the wing of a butterfly. Every

programmer knows the sensation: A trivial, minute change wreaks havoc in a

massive system. Until we know more about programming, we had better for all

practical purposes think of systems as composed, not of sturdy structures like

algorithms and smaller programs, but of butterflies ’ wings.

The discontinuous nature of programming sounds the death knell for

verification. A sufficiently fanatical researcher might be willing to devote

two or three years to verifying a significant piece of software if he could be

--
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assured that the software would remain stable. But real-life programs need to

be maintained and modified. There is no reason to believe that verifying a

modified program is any easier than verifying the original the first time

around. There is no reason to believe that a big verification can be the sum

of many small verifications. There is no reason to believe that a verification

can transfer to any other program -- not even to a program only one single line

different from the original.

And it is this discontinuity that obviates the possibility of refining

verifications by the sorts of social processes that refine mathematical proofs.

The lone fanatic might construct his own verification, but he would never have

any reason to read anyone else ’s, nor would anyone else ever be willing to read

his. No community could develop. Even the most zealous verifier could be

induced to read a verification only if he thought he might be able to use or

borrow or swipe something from it. Nothing could force him to read someone

else ’s verification once he had grasped the point that no verification bears

any necessary connection to any other verification.

II lIT 1111111 - -
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Believing Software

The program itself is the only complete description of
what the program will do.

P. J. Davis.

Since computers can write symbols and move them about with negligible

expenditure of energy, it is tempting to leap to the conclusion that anything

is possible in the symbolic realm. But ~eality does not yield so easily;

physics does not suddenly break down. It is no more possible to construct

symbolic structures without using resources than it is to construct material

structures without using them. For even the most trivial mathematical

theories, there are simple statements whose formal demonstrations would be

impossibly long. Albert Meyer’s outstanding lecture on the history of such

rese-~rch 1151 concludes with a striking interpretation of how hard it may be

to deduce even fairly simple mathematical statements. Suppose that we encode

logical formulas as binary strings and set out to build a computer that will

decide the truth of a simple set of formulas of length, say , at most a thousand

bits. Suppose that we even allow ourselves the luxury of a technology that

will produce proton-size electronic components connected by infinitely thin

wires. Even so, the computer we design must densely fill the entire observable

universe. This precise observation about the length of formal deductions

agrees with our intuition about the amount of detail embedded in ordinary ,

workaday mathematical pr3ofs. We often use “Let us assume , without loss of

generality ...“ or “Therefore, by renumbering, if necessary ...“ to replace
enormous amounts of formal detail. To insist on the formal detail would be a

silly waste of resources. Both symbolic and material structures must be

engineered with a very cautious eye. Resources are limited; time is limited,

_ _  -~~-~~~—-- -~~~~~~~~~~~~~~~~~~ -~~~
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energy is limited. Not even the computer can change the finite nature of the

universe.

We assume that these constraints have prevented the adherents of

verification from offering what might be fairly convincing evidence in support

of their methods. The lack at this late date of even a single verification of

a work working system has sometimes been attributed to the youth of the field.

The verifiers argue, for instance, that they are only now beginning to

understand loop invariants. At first blush, this sounds like another variant

of the scaling-up argument. But in fact there are large classes of real—life

systems with virtually no loops -- they scarcely ever occur in commercial
programming applications. And yet there has never been a verification of, say,

a COBOL systems that prints real checks; lacking even one makes it seem doubtful

that there could at some time in the future be many. Resources and time and

energy are dust as limited for verifiers as they are for all the rest of us.

We must therefore come to grips with two problems that have occupied

engineers for many generations: First, people must plunge into activities

that they do not understand. Second, people cannot create perfect mechanisms.

How then do engineers manage to create reliable structures? First,

they use social processes very like the social processes of mathematics to

achieve successive approximations at understanding. Second, they have a

mature and realistic view of what “reliable” means; in particular , the one

thing it never means is “perfect.” There is no way to deduce logically that

bridges stand, or that airplanes fly, or that power stations deliver

electricity. True, no bridges would fall, no airplanes would crash , no

electrical systems black out if engineers would f irst demonstrate their

perfection before building them -- true because they would never be built

at all.
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The analogy in programming is any functioning, useful, real-world system.

Take for instance an organic-chemical synthesizer called SYNCHEM (5]. For this

program, the criterion of reliability is particularly straightforward —— if it
synthesizes a chemical, it works; if it doesn’t , it doesn’t work. No amount

of correctness could ever hope to improve on this standard; indeed, it is not

at all clear how one could even begin to formalize such a standard in a way

that would lend itself to verification. But it is a useful and continuing

enterprise to try to increase the number of chemicals the program can synthesize.

It is nothing but symbol chauvinism that makes computer scientists

think that our structures are so much more important than material structures

that (a) they should be perfect and (b) the energy necessary to make them

perfect should be expended. We argue rather that (a) they cannot be perfect

and (b) energy should not be wasted in the futile attempt to make them perfect.

it is no accident that the probabilistic view of mathematical truth is closely

allied to the engineering notion of reliability. Perhaps we should make a

sharp distinction between program reliability and program perfection -- and
concentrate our efforts on reliability.

The desire to make programs correct is constructive and valuable. But

the monolithic view of verification is blind to the benefits that could result

from accepting a standard of correctness like the standard of correctness for

real mathematical proofs , or a standard of reliability like the standard for

real engineering structures. The quest for workability within economic limits,

the willingness to channel innovation by recycling successful design, the trust

in the functioning of a community of peers -- all the mechanisms that make

engineering and mathematics really work are obscured in the fruitless search

for perfect verifiability.

What elements could contribute to making programming more like

- ~~~- --~~~~~~~—~~~~~~
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engineering and mathematics? One mechanism that can be exploited is the

creation of general structures whose specific instances becoms more reliable

as the reliability of the general structure increases.* This notion has

appeared in several incarnations, of which Knuth ’s insistence on creating and

understanding generally useful algorithms is one of the most important and

encouraging. Baker’s team-programming methodology El] is an explicit attempt

to expose software to social processes. If reusability becomes a criterion

for effective design , a wider and wider community will examine the most common

programming tools.

The concept of verifiable software has been with us too long to be

easily displaced. For the practice of programming, however, verifiability must

not be allowed to overshadow reliability. Scientists should not confuse

mathematical models with reality —- and verification is nothing but a model
of believability. Verifiability is not and cannot be a dominating concern in

software design. Economics, deadlines, cost-benefit ratios, personal and group

style , the limits of acceptable error -- all these carry immensely much more

weight in design than verifiability or non-verifiability .

immensely much more weight in design than verifiability or non-verifiability .

So far, there has been little philosophical discussion of making

software reliable rather than verifiable. If verification adherents could

redefine their efforts and reorient themselves to this goal, or if another

view of software could arise that would draw on the social processes of

mathematics and the modest expectations of engineering, the interests of

real-life programming and of theoretical computer science might both be better

* This process has recently come to be called “abstraction,” but we feel that
for a variety of reasons “abstraction” is a bad term. It is easily confused
with the totally different notion of abstraction in mathematics, and often
what has passed for abstraction in the computer science literature is simply
the removal of implementation details.
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served.

Even if, for some reason that we are not now able to understand, we

should be proved wholly wrong and the verifiers wholly right, this is not the

moment to restrict research on programming. We know too little now to sense

what directions will be most fruitful. If our reasoning convinces no one, if

verification still seems an avenue worth exploring, so be it; we three can only

try to argue against verification, not blast it off the face of the earth. But

we implore our friends and colleagues not to narrow their vision to thi. one

view no matter how promising it may seem. Let it not be the only view, the

only avenue • Jacob Bronowski has an important insight about a time in the

history of another discipline that may be similar to our own time in the

development of computing: “A science which orders its thought too early is

stifled ... The hope of the medieval alchemists that the elements might be

changed was not as fanciful as we once thought. But it was merely damaging to

a chemistry which did not yet understand the composition of water and cc~~on

salt.”

I
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